如果我们能解决各种极为复杂的科学和工程问题,便能通过核聚变获取清洁、安全、无穷无尽的能量了。图为核聚变反应堆中的等离子体。
核聚变目前仍面临着两大挑战:一是如何延长反应时间,二是怎样的设备结构才能将核聚变能量转化为电力。由于核聚变无法先用微缩模型进行研发、再成比例地放大,我们至少还要25年时间才能建成首座商用核聚变发电厂。
如今,国际科学界正联手在巴黎建造一处规模巨大的核聚变研究机构,即国际热核聚变实验反应堆(简称ITER,在拉丁语中意为“路”),它可以产生5亿瓦特的热核聚变能量,每次时间长达8分钟。
新浪科技讯北京时间12月12日消息,据国外媒体报道,数百年以来,人类一直梦想着驾驭太阳能,为地球上的生命提供能量。但我们想实现的,不仅仅是利用太阳能,而是在地球上造出一个“迷你太阳”,也就是核聚变。
如果我们能解决各种极为复杂的科学和工程问题,便能通过核聚变获取清洁、安全、无穷无尽的能量了。只要每日从水中提取出一千克的氘(氢的一种同位素),产生的电量就足够成千上万个家庭使用。
从上世纪50年代以来,科学与工程研究取得了巨大进展,使我们朝着可持续的氢原子聚变反应又近了一步。实验产生的核聚变能量虽然很少,但也足以被测量出来了。但怀疑者和支持者都意识到,核聚变目前仍面临着两大挑战:一是如何延长反应时间,二是怎样的设备结构才能将核聚变能量转化为电力。
普林斯顿等离子物理实验室的核聚变研究人员指出,我们至少还要25年时间才能建成首座商用核聚变发电厂。但考虑到核聚变带来的巨大益处,我们还是要继续努力的。证明核聚变的可行性也许要不了这么久——我们也必须加快步伐,才能在计划未来的能源时将核聚变纳入考虑范围之内。
与太阳能、天然气与核裂变等其它发电方式不同,核聚变无法先用微缩模型进行研发、再成比例地放大。核聚变在实验阶段就需要大规模开展,并且相关设备也需要花很久来准备。但在接下来的一个世纪中,人类必须设法获取充足、清洁的能源。如果不在核聚变这种最具前景的能源上想办法,就未免太愚蠢了。
但这件事做起来相当困难:由于原子核均带正电荷,因此会与彼此相斥。除非它们以极高的速度运行,才能在相撞时融合在一起,释放出我们需要的能量。这样的过程在太阳上会自然而然地发生。但在地球上,我们需要用强大的磁铁来控制住由带电的氘、氚原子核与电子构成的超高温气体,也就是我们所说的等离子体。等离子体的温度极高,超过1亿摄氏度。在这样的高温下,带正电荷的原子核便能以超高速运行,冲破正电荷产生的排斥力,与别的原子核融合在一起。
ITER采用了一种名叫“托塔马克”(tokamak)的反应装置,其中的等离子体呈甜甜圈状,受到强大的磁场约束。而该磁场的一部分是由等离子体中流动的电流产生的。
我们还需要从四个方面进一步加强核聚变的优势:其一,在现有的物理和工程条件下,用计算机优化核聚变反应堆的设计。
原子核融合之后会形成两个高能粒子——一个α粒子(氦原子的原子核)和一个中子。要想使等离子体达到如此高的温度,就需要在核聚变反应开始之前,向反应器中提供大量能量。但反应一旦开始,核聚变产生的能量就足以维持这一温度,多余的热量则可被我们用来转化成可利用的电能。
核聚变所需的燃料在大自然中比比皆是。例如,水中含有大量的氘,反应器还可以将锂转化成氚。并且这些原料广泛分布于世界各国,不会受当地自然资源所限。核聚变是一种清洁的能量来源,不会产生温室气体,产物只有氦气和中子。
核聚变是一种安全的反应过程,不可能像核裂变一样发生失控。如果反应出现异常,等离子体的温度就会下降,核聚变反应也就随之停止了。正是由于核聚变具有这样的特性,数十年来,人们才对其展开了不懈研究,并越来越被其所吸引。但核聚变虽然益处多多,对技术的挑战也同样不容小觑。核聚变领域取得的进展主要可以从两个方面进行衡量。
首先,我们对高温等离子体有了更深入的了解。科学家专门创立了等离子体这一新的物理领域,研究如何将等离子体限制在强大的磁场中,后来还掌握了对等离子体进行加热、使其保持稳定、控制等离子体内部扰动的能力。
其次,相关技术也取得了巨大进步。我们在磁体、电磁波源和粒子束领域都取得了重大突破,得以用它们来限制和加热等离子体。此外我们还研发出了能够承受等离子体极端高温的材料。
从这一过程中取得的进步来看,核聚变商业化还是有望实现的。首屈一指的便是在实验室中产生的核聚变能量:上世纪70年代,科学家在实验室中产生的核聚变能量还只有几毫瓦,仅仅持续了几微秒;但到了90年代,普林斯顿等离子体实验室产生的能量便达到了1千万瓦特,欧洲联合科研中心在1秒钟里产生了的能量更是高达1600万瓦特。
如今,国际科学界正联手在巴黎建造一处规模巨大的核聚变研究机构,即国际热核聚变实验反应堆(简称ITER,在拉丁语中意为“路”),它可以产生5亿瓦特的热核聚变能量,每次时间长达8分钟。如果将这些能量转化为电能的线万户家庭供电。
在此次实验中,科学家将对可持续核聚变发电厂可能遇到的关键科学与工程问题进行测试。
ITER采用了一种名叫“托塔马克”(tokamak)的反应装置,其中的等离子体呈甜甜圈状,受到强大的磁场约束。而该磁场的一部分是由等离子体中流动的电流产生的。
虽然ITER是被当作研究项目来设计的,不准备用来产生电能,但它产生的核聚变能量将高达给等离子体加热所需的5千万瓦能量的10倍。
这是一次巨大的科学飞跃。在此次实验中,等离子体加热所需的大部分能量都来自于核聚变反应本身。参与ITER项目的国家占了世界上一半的人口:中国,欧盟,印度,日本,俄罗斯,韩国和美国。此次项目就像一份强有力的国际声明,彰显了我们对实现核聚变的迫切需求和庄严承诺。
首先,我们必须继续开展对托塔马克的研究。要继续促进物理和工程领域的发展,让等离子体可以维持数月的稳定状态。我们还需要研发能够高耐热材料,可以在较长时间内承受相当于太阳表面温度五分之一的热量。此外,我们还要寻找反应堆堆芯的屏蔽材料,吸收反应释放出的中子。
计算结果显示,优化后的设计应为甜甜圈形状,运行起来非常稳定,并且能自动运作数月之久。在核聚变行业中,这种装置叫做“仿星器”(stellarators)。
2)研发磁力更强、体积更小的新型高温超导磁铁,从而减少核聚变反应堆的体积和成本。
3)用液态金属取代固态金属来约束等离子体。固态金属在接触等离子体时可能会破裂,而液态金属不会,因此或许能解决这个棘手的问题。
在采取上述做法之后,即使在强度稍弱的磁场中,实验装置也能照常运行,或许还能降低反应堆的大小和成本。
如今,各国政府纷纷出资,支持上述两方面的研究。取得的成果将惠及核聚变能源领域的所有研究工作,并将进一步加深我们对宇宙中、以及工业中的等离子体的理解。而在过去的10至15年间,私营企业也加入了这一阵营,我们将不断进步,终有一日能获得用之不竭、清洁安全的能源。
其实真要用语言来描述核聚变,那也并不复杂 —— 几个小的原子核合并成为一个大的原子核,这就叫聚变了。反之,就是核裂变。因为原子核中蕴含着巨大的能量,这种变化引发的中子和电子的释放也就表现为巨大能量的释放。因为其原理和太阳发光发热的原理很相似,所以我们在了解它的时候也经常能看到诸如“‘人造太阳’技术获得突破”这样的文字。
那么这个“巨大能量”究竟有多么巨大呢?一般来说人们希望能用氘、氚这样的轻原子核结合成氦这样的重原子核。30 毫克的氘通过聚变可以产生相当于 300 升汽油的热能,1 千克氘就足够让千家万户用电了。可见,核聚变能够产生的能量是何等巨大。
更重要的是,氘这种东西可不怎么稀罕,从水里头就能够提取出来了。不往远处看,海水就是提取氘的主要源头。这样也就是说,只要我们能够掌握核聚变技术,就几乎有了取之不尽的能源。据说光是海水里就存在有 45 万亿吨的氘,可想而知这能够解决多大的危机。
我们看到“核反应”三个字肯定马上就会想到切尔诺贝利、福岛这些关键词,感到十分可怕,其实大可不必,因为可控核聚变是非常洁净、安全的。据了解,一旦反应出现异常,其温度会立刻下降,然后反应也就将自动停止。
然而光是知道这原理可远远不够,否则那么科学工作者就不会前仆后继地在这上头殚精竭虑了。
如果仅仅是在一般的条件下,核聚变是根本不会发生的。我们人类也不是不能实现核聚变,那个玩意儿叫氢弹,但这是不可控的。这种要将核聚变转化为能让人类受益的核反应,我们就必须实现可控核聚变。然而要实现这些,太难了。
太阳发光发热,那是有 1500 万度的高温加上 2000 亿个大气压把氢聚变成为氦,可见所谓的“一定条件”大抵是指超高温和超高压。这样,原子核的运动才能够异常剧烈,才有可能克服静电斥力,达到聚合距离(原子尺度的十万分之一)。可是这个要求对于我们来说太苛刻了,那样的高温和高压,难以达到。氢弹之所以能实现,还得多亏有作为“扳机”,让后者的爆炸瞬间达到聚变条件,这才能释放出更大的能量。
于是乎我们就有了两个最大的难题:怎么加热到那么高的温度?用什么来装那么高温的东西?
如今科学家们提出的已经被广泛认可的有两种办法:惯性约束要求将聚变燃料放进弹丸中,然后高能激光照射弹丸使得温度瞬间飙升。弹丸烧毁后聚变燃料被向内挤压。磁约束办法则用磁场来束缚已经成为等离子体的聚变燃料,让它悬空,不和容器接触。
可以看出来,两种办法各自在解决两大难题的其中一个上很有优势。然而问题是,惯性约束核聚变解决了高温的问题,却找不到能容纳燃料的容器;磁约束解决了容器材料的困扰,但悬空且还在高速旋转的材料却很难被聚焦点火。
说了那么多可控核聚变的困难之处,那么中国的技术突破到底在哪里呢?简单来说就是材料。
据了解,如果要制造适用于可控核聚变的合格的容器,其材料就需要承受每平方米 4.7 兆瓦的热量 —— 普通的钢铁只要一瞬间就会被融化了。中国的科学家研发出了一种特殊高纯度金属铍、铜合金、不锈钢组成的三明治结构,并用新工艺将这三种材料紧密结合在一起。测试中,这样的材料所经受住的高温甚至比标准还要高 20%。
如果材料的问题真的得到了解决,那么上文中我们所说的两种方案之间的矛盾就将不复存在。这次技术突破的意义,绝对不可谓不重大。
另外,我们也不可以忽略中国今年八月在磁约束(也叫托卡马克装置)上获得的技术突破。在此之前使用磁场束缚等离子体的方案虽然解决了容器的困扰,但等离子体却“如烈马般”难以控制。然而中国的科学家却实现了将等离子体控制在一个高效的稳定态上,运行持续时间达到分钟级别。
两种最可行的方案,中国都已经有了各自的突破。可以说,核聚变方面的研究我们已经是走在了世界前列。
即使我们在今年内连续取得了两项巨大的技术突破,但需要意识到的是真正的可控核聚变离我们还很遥远。可控核聚变的应用何时能够到来,最乐观的估计也是 25 年后。毕竟我们人类现在就连技术路线都还没有确定,距离实际应用那就更远了。
从某种意义上说,我们也可以说实现了可控核聚变,但是如今的技术水平,还难以做到总能量输出大于能量输入。毕竟研究核聚变的目的是要解决能源问题,不能实现输出>输入,那都算不得成功。
尽管前路艰难,我们都注定要将核聚变技术继续研究下去。这依靠的是大量的成本的投入,但只要真正成功了,那就是不计其数的回报。
好在困难即便巨大,科学家们也并不认为人类不能掌控核聚变,只是时间问题而已。那样的话,我们就只能耐心地继续等下去,直到开花结果的那一天了。
:习 创新中国 创新创业 科技体制改革 科技创新政策 协同创新 成果转化 新科技革命 基础研究 产学研 供给侧
:军民融合 民参军 工业4.0 商业航天 智库 国家重点研发计划 基金 装备采办 博士 摩尔定律 诺贝尔奖 国家实验室 国防工业 十三五
:预见2016 预见2020 预见2025 预见2030 预见2035 预见2045 预见2050
:颠覆性技术 生物 仿生 脑科学 精准医学 基因 基因编辑 虚拟现实 增强现实 纳米 人工智能 机器人 3D打印 4D打印 太赫兹 云计算 物联网 互联网+ 大数据 石墨烯 能源 电池 量子 超材料 超级计算机 卫星 北斗 智能制造 不依赖GPS导航 通信 MIT技术评论 航空发动机 可穿戴 氮化镓 隐身 半导体 脑机接口
:中国武器 无人机 轰炸机 预警机 运输机 战斗机 六代机 网络武器 激光武器 电磁炮 高超声速武器 反无人机 防空反导 潜航器
:战略能力办公室 DARPA Gartner 硅谷 谷歌 华为 俄先期研究基金会 军工百强
:黄志澄 许得君 施一公 王喜文 贺飞 李萍 刘锋 王煜全 易本胜 李德毅 游光荣 刘亚威 赵文银 廖孟豪
请输入你的在线分享代码
额 本文暂时没人评论 来添加一个吧
发表评论